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FOREWORD

This report was prepared by Ohio State University Research Foundation
under Air Force Contract F33615-71-C-1257. The contract was initiated
under Project No. 7342, "Fundamental Research on Macromolecular Materials
and Lubrication Phenomena," Task No. 734002, "Studies on the Structure-
Property Relationship of Polymer Materials." The work was administered
under the direction of the Elastomers and Coatings Branch, Nonmetallic
Materials Division, Air Force Materials Laboratory, with Dr. William L. Lehn
serving as Project Engineer. This report describes work conducted between
I January 1971 and 30 August 1972. This report was released by the authors
in September 1972 for publication as a Technical Report.

This technical report has been reviewed and is approved.

'WARREN P. JuVlWS, Chief
Elastomers and Coatings Branch
Fcametallic Materials Division
Ai. Force Materials Laboratory
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ABSTRACCT

j Oxygen transport in po]ymonorae-tlylsiloxane was investigated
and compared to polydimethylsiloxane properties. The effects of
rutile pigmentation on the permeability, diffusion, and solubil-
ity of o4gen through polymonomethylsiloxane were investigated.
Permeability and diffusion constants decreased with increasing,
pigment concentration and there was no evidence of oxygen sorp-
tion on the pigment.

Relative cdhesion of po:lydimethylsiloxane and polymonome-
thylsiloAane on futile was predicted from water contact angles.
Polymonomethylsiloxane was proposed to have the greater adhesion
but was small in either case.

II The stability of dimethyl and monomethyl poJysiloxaxes
pigmented with rutile and zinc oxide was evaluated in a simu-
lated solar ultraviolet environment. Oxygen transport proper.
ties of the selected polymers were not observed to limit dBmage
of either pigment. Degradation of silicone/rutile paints was
attributable to independent optical damage in the pigment andL polymer. The silicate-coated rutile exhibited small reflectance

changes as reported for other silicate coated pigments.

Ultraviolet degradation of zinc orthotitanate powders
exhibited no dependence on either pigment particle size or
Tuenchimg. temperature. The initial solar absorptance increased
with increased quenching temperature.
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I DEGRADATION MErCHANISMS OF PIGMENTED COATINGS

I. INTRODUCTION

Stringent temperature control for spacecraft is necessary to pro-
tect man and temperature-sensitive electronic equipment. The exchange
of radiant energy between the vehicle and space, the principal means
for temperature regulation, is controlled by the optical properties of

3 the surface of the spacecraft. For space travel near the earth, coat-
ings have been applied with a low solar absorptance (a.) to infrared
emittance (e) ratio. Thermal control coatings are white and consist of
oxide pigments of high index of refraction dispersed in a polymeric
binder of low refractive index. Unfortunately, coatings of this type
are damaged when exposed to high energy bombardment (solar ultraviolet
radiation, protons, and electrons) in space. The damage produces an
increase in the solar absorptance of the paint.

Much work has been directed toward identification of the degrada-
tion mechanisms. If the causes of degradation were understood, coatings
which are stable or, at least, degrade in a predictable manner, might
be developed. Degradation has been observed in the pigment and the
polymeric binder; however, binders now exhibit minimal degradation and

Sthe major goal remains to develop a stable pigment.

Radiation produced defects which absorb photon energies in the solar
spectrum are the cause of optical degradation in oxide pigments. The
identification of the absorbing defects has received considerable atten-
tion. For the purpose of this investigation, the exact absorbing species
is unimportant but in all cases the formation of absorbing species isii accompanied by the photodesorption of oxygen. Thus, the oxygen trans-
port properties of polymer encapsulants will influence pigment stability.

f In some cases, polymeric binders have substantially influenced the
degradation of thermal control coatings but the interaction of the pig-
ment and the polymer has not been established. Suggestions of pigment
surface passivation by the encapsulating medium has warranted considera-
tion of the pigment-polymer interface stability. The surface condition
of the pigment has been regarded as being a prime consideration in under-

Hl standing degradation.

The purposes of this investigation are to determine pigment degra-
dation dependence on (1) oxygen transport in typical polymeric binders,
(2) pigment/polymer surface compatibility, (3) pigment surface area, and
(4) heat treatment.

It



1 II. TECHNIML DISCUSSION

1. Solar Reflectance and Absorptance

The effect of optical parameters on solar reflectance, R., and
solar absorptance, as, ,may be defined by.measurement principles. Solar
reflectance is measured for calculation of solar absorptance and their
sum is unity, Rs + -1 (1)

Reflectance is measured as a function of wavelength and relative to a
suitable white standard such as MgO, CO3 , or Ba90 4 . The reflectance
of the standard is assumed to be. one, 1RStd = 1. The subscript denotes

[ a sample sufficiently thick to prevent transmission; in practice, typical
standards have a reflectance of 0.98 to 0.99.' The reflectance of typi-
cal theiml control pigments is shown in Fig. 1.

[ Solar reflectance over thc solar spectrum2 may be calculated from

Rs= JI.R& .(2)

where Ia is the solar radiation intensity at a specific wavelength and

[j R• is the resulting reflectance.3 At'sar wavelength;" solar reflectance

is proportional to solar radiation intensity. In practice, the solar.
spectrum is incremented into n equal energy bands, and solar reflectance
is calculated from

Rs Ri/n (3)

where Ri is the average reflectance.

2. Flight Evaluations of Coatings

Until 1965, the solar absorptance of oxide pigments, such as ZnO
and TiO2 , was thought to increase only slightly by exposure to ultra-
violet radiation. In the laboratory, the wost stable thermal control

Ii coating was polydimethylsiloxane pigmented with zinc oxide which later
proved extremely unstable. Before 1965, optical stability was deter-
mined by measuring the solar reflectance before and after ultraviolet
irradiation in a vacuum but with post-irradiation reflectance measure-
ments in air.

The first serious discrepancies were reported by Pearson' for data
collected on Orbiting Solar Observatoy II. Solar absorptances of

Preceding page blank 3
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titanium dioxide and zinc oxide in silicone binders increased at rates
greater tban laboratory predictions. Confiming data were obtaied on
the Hulner IV flight where z-in oxide 2n poASSiUM s32iat degreded
at ten times the laboratory rates. 5 The flight-laboratory diseancies
were Am -t-rated by HacfilLan et al. by decreased reflectance iiter

vacut and ultraviolet irradition.! Subsequent ueastaremzts of reflec-
tance u-der vacu were referred to as in situ

Zinc oxide and titanidm dioide, both in pollailoxene,
exiited inrae of 0.10 and 0.15, respectively., in solar absorpac,

L&ac, at 133D equivalent sunlight hours, SH. ND further absorptance
caes occurred on term•i•tion of ultraviolet irr'Aiation, but -. ithin
ten minutes of air admission, inuced solar absorptance decreased to
0.01 for zinc oxide and to 0.03 for t-itanium dioxide. The solar absorp_-
tance recovery to near pre-irradiation values invalidated mamy previous
radiation daage concepts. A description of in situ reflectance appa-

S[ratu7 was reported by Zerlaut and Courtney.

Since radiation-induced solar absorptance bleaches r=_idly by
exrowsre to air. a nmer of fl!ght experiments were designed to test
laboratcry in situ measurements. Data frcm Fegsus I and SO-I (both
near-earth orbit spacecraft) agreed well with laboratory results for a
zinc oxide and polydimet=lylsiboxane coating.e Flight-laboratory correla-
tion was shown to be highly dependent on the laboratory ultraviolet
radiation source. Samnles frow the near-earth orbit of OSO-III corre-
lated well for zinc oxide degraded with a mercury arc lamp while xenon
radiation produced much higher optical damage than fo-ml in flight.9

This was surprising because xenon radiation matches the solar spectrum
better than a iaercury arc, and induced absorptance is highly dependent
on the spectrnm of the radiation source. 1 0

For deep space flights (the Mariner and Lunar Orbital series),

solar absorptance increases were much greater. Increased degradation
~ Hwas attributed to increased pu-ticulate radiation (solar electrons and

protons) found in deep space. Particulate radiation is negligible for
near-earth flights and prediction of thermal control responses frau
laboratory testing is reliable. Deep space simulation using combina-
tions of electrons, protons, and solar ultraviolet radiation has been
poor due to the inability to duplicate the solar radiation erairomment
and the synergistic effects of combined irradiation. 11112

3. Degradatian and Damage Mechanisms

H IThe evolution of oxygen from oxide pigments by the combination with
photo-induced defects is necessary for most proposed mechanisms of ultra-
violet degradation. The strongest evidence for relating ultraviolet-
induced reflectance decreases to oxygen desorption has been the recovery
of reflectance to pre-irradiation values with oxygen admission.

5



a. Zinc Oxide

optical dmage in zinc oxide occurs = two distinct regions,
the visible (0.4-0. microns) and the infrared (2abe 0.8 micron).

ammage in the infrared region rapidly and completely bleaches upon exc•-
sure to air while damage in the visible shows very little recover; - The
infrared d~amage spectra can be r~e!1eneted by -vacwai and may be observed
for several cycles of air and vaczmm expsure. it is related to the loss
and gmin of byjsica1y adsorbed o.-ygen.

P-hotdeorpion of o•'gen ha been rel.ated tDpoteconductivrit,

in zinc oxide. Increases in systen ressiure and conductivity occurred
simultaneously with tungsten irradiation. Desorbed o.ygen was presuned
resp•onsible for uress-te imcreases. I O`-gen ras sbhin to be _hoto-
desorbed f--m irradiated zinc oxide, but anomwtric t n-e-
vented fps species identification. 0he absorird oxygen species were

ostualated to be 0, 0-, and O with the relative ouantities dependent

on tenneratture. 1-5 3_y electrical confuactivity and pressure na
the uredominant a-.sorbed species a teaterau was de ed to be

Zinc oxide has a negati-v' surface charge produced by the cheei-
sorption of molecauar oxvgen on the surface as depicted in eTuation (41)-,

92 (g)+e -+ 0.

Oxygen adsorption concentrates excess electrons at the surface and pro-
duces an electron deficient region extending a-p ro-irnate]-yr 100 to 1000 .
f.:: the surface.!-8  Further evidence for surface degradation was the
lar-c- of detectable darae in single crystal zinc oxide.19

Radiation induced holes, attracted to the surface by the nega-
tive charge, combine with chemisorbed oxygen to form physically adsorbed
oxygen. Samll attractive forces (0.05 eV) permit thermal oxygen desorp-
tion. Under vacuum, desorption is irreversible and excess zinc is de-
posited at the surface to reverse the ch-_rge. Holes must overcome a
retarding potential before the defect concentration reaches equilibrium.
Thus, induced absorptance reaches a constant -value for a specific set of
conditions. Degradation rate may seem to be initially limited by oxygen
desorption and later by hole arrival at the surface.' 9

Blakemore assumed that interstitial zinc was responsible for
increased solar absorptance.;'° Sklensxy, et al. proposed induced infra-
red absorption by either free carrier electrons or uxygen vacancies (F-
centers). Free carrier absorption was eliminated because free electrons
were not detected by electron spin resonance and absorption did not
increase as the third power of wavelength. Visible abtorption was
attributed to either lattice distortion steaming from excess zinc or
hole traps. Dack of visible spectrum recovery was in agreement with
diffusion of zinc to produce lattice strain.2 1



dislocations- The resultimg lattice strain womi cae toe absorution

tion -Y a comEaex zinc-dislocation color center w=M occur. 7bey sup-
xported the disl~cation theory by inducig surface catio'Is in singe

crystal zinc oxi to prodmce a brad edge shift i•_d•t INids -re fr-
the puheodegradtion shift.22

b. _•'-ile

Siiautile degretion .ini• r to zinc oxid with abrtion
frc. the Ibsorption edge into the infrared air a r- fo a.oroi-
mtely 0.8 to Z.0 mxron. Fecovery of rutile is inw• Iete with cg ter

damage rmining in the visible than in the infrared.33 No
measurable absorption increse for single crystal rutile is in accord
with a calculated electron depletion denth of 2000 L..2,

I oxygen adsorption-desorption degradation control --s been sug-
gested for rutile. Correlatton has been estblihed beween increased
S01-2-lar bsorptance andA increases in c-arbon dioxi-d mrsr e-,-olye fvm
]Jrutile containing in excess of 100 rm carbon.--- An increase in oxygen
pressure was observed during the peik degradation r-ate of r-tile, but
the quantity of oxygen was too msall to clearly di•tigsh between
adsorbed and desorbed oxygen.V

A large nuber of defects bate been suggested; among thrn areE F-centers. interstitial titanium, and Ti72.27 Greenberg, et al. suW-
gested thit the broadness of th- absorption band resulted from seve.-a
codleined defects such as (e/Ov-0-,'-i+3)0, (O(->2 /-i+j 3 ), or
(Ti--'/0V T-+3)O22 Coufova and A end studied the o tical abso_ tion
vspectrum by annealing rutile in hydrogen and attributed absorption
peaks at 0.5 and 0.66 micron to electrons at oxygen vacancies.2
Von Hipple, et al. observed absorption at 1.5 microns in oxygen-
deficient rutile and corclud-d it was caused by lattice collapse from
oxygen loss, a g T to trap electrons and form Ti3 near oxygen
vacancies. ° Yahia measured electrical conductivity of rutile as a
function of oxygen pressure at 10000K. 31 For pure nutile, an oxygenvacancy mechanism was predominant above ID rmTg and titaniu intersti-
tials dominated below 10 nmHg. For Al-doped ruti:e, both -echan:sms

were present but could not be separated.

c. Zinc Orthotitanate

Zinc orthotitanate exhibits ultraviolet-induced absorption
simil-r to rutile except the peak degradation occurs at 0.85 micron.
Through electron paramagnetic resonance studies, Ashford and Zerlaut
conc±udel that Ti+' was created by photodesorption of oxygen and is
responsD-le for induced absorption in zinc orthotitanate., 2

!7



S•os have received videspread use as & biader in tbeiml
control coatuqp. 3FuJy&U.L=IdWiJ3aC V [(C43)2 SIiiij, an poqrnow-
Met1wlsjlaxaM, [HSiOt.]n, bave absorption eges neer 0.2 micron ad
are tia parmet in the rkinider of the ultraviolet and the visible
apctru. Bth silicones exh•,bt absorption incsreses in the ultra-
violet and cortvave portion of the visible spectrtm after exposure to
solar envJroPt. _Pboumoaret- lmsiloxe is fternfly cured and is
more stable. !he greater ation of the dibylsilomne results
f--= damme to the cta.lvst used in cmrh.4 Recent evidence indicates
thxtt the instability of the dineftl form is not caused by curing agents
but by silicone decoupositior or trace contamdmtion.35

Ionsilicone is r coapred to pigment
degradation. Pimentation with ultraviolet absoxbant uterials provides
additiaonl pretection for the binder by rei. Tbus, the najor

effort in ilprovizng the solar stability of tbermsl control coatings has
been directed tord pigments.

Caqprisson of binderless pigments with paints indicate
Air d ration resistance from the silicone binders. A rutile
yolydimetbylsibxame want showed (1) infrared absorptance increases
to be lover and slover for the paint than the pigment, (2) paint degra-
dation to increase with temeratare, eud (3) inereasing the ultravolet
intensity ineed pigment ation while paint degration rmained
insensitir.e. 1 These results suggested that oygen transport thrmgh

Sthe binder my n-dit degradation. In a similar investigation of rutile-
silicone paints ard binderlers pigments, recovery :ates suggested
diffusion-limited kinetics for the paints. Also the binder appeared to
have a passivatirg effect on the pigment.Y7

&. inent Surface Stabilization

Single crystals exhibit no increase in solar absorptance, while
corresponding pigne.ts with surface areas four orders of magnitude
greater degrade severely. Similarly, larger particles exhibit less
degradation for the same volume concentration than smaller ones.38

Increased degradation rates my be attributed to increased lattice
strains and increased surface defect states produced in grindingA.

The radiation induced defects may be confined to the electron depleted
region near the surface of each particle. Pigments with a radius
smaller than the depletion depth degrade in bulk, while the solar
absorptance of larger perticies remain umebanged at a core.

Tihe importance of improving pigment surface stability led to vari-
ous passivation processes. The most widely referenced passivatlon was
zinc oxide with potassium silicate in aqueous solution. 4 0 Silicate-
coated zinc oxide became one of the most ultraviolet stable thermal
control coatings produced to date.41 Zerlaut, et al. reported that

8



Sthe si I Jcatreplce surface caq~ and prevented oace pbatodesorp-

tion.42 Thi nehni suggeatd cbnia passiation but Sklesk,

et al. conluded that silicate coating my 1ysically inbiit oxygen
transport.45 A siuilar silicate coating is cvmaunly used on terrestrial
rutil pigment to isprme the resistance to ultraviolet discoloration
and fading.4 4 7he coating is wecipitated from aqeous sodium silicate
and calcired at 4OO-6O0C.45  Apuroiiutely 1$ of zinc oxide is also
precipitated from a zinc sulfate solution during the coating process.__

7itania-opacified porcelain en lr bave extreme stability in an
ultraviolet el-lV NI -eIt, and ev hiig. 4egrable antim -y oxide
eh3ibits surprising .-tability in an et.. . The stabilization of an

Sennel *y involve either chemical passivation and/or physical inhibi-
tion of oxygen piotodesorption. low oGgen diffusion in glasses promte

y sical. sivation even iu the absence of cemical stabilization.

5. Wss Tramnport i;- folyners

For steasy state 'fow of a gas fhlrogt a menbrane of thickness. Z,
the permeability coefficient, P, is defined as

Sj = P (p1-p.)/t. (5)

where j is the fbu Der unit membrane' area wa-oemdicular to the direction
of flov, p1 is the gas pressure on the high pressure side of the membrane
and p is the pressure on the_ fi pressure side. 6 For experimental
siEplicity P2 = 0 and P2  , << -,, so that - = p, . If Henry's law isH valid over the pressure region, the so; ilt cotificiene., S3, is

c = I %6)

where C iz concentration.4 9  For conditions of equilibrium at the gas
polymer interface, the steady state diffusion ccefficient, D, is given
by Fick's first law.

J = DCl(

and by combining eqamtions (5)- , e relation between P, D, and S
is

P = DS. (8)

For diffusion in a pure polymer the diffusion coefficient is equal
[] to the interdiffusion coefficient, Di2 , for the gas-polymer mixture.

If Henm-j's law is valid for the gas-polymer solution, there is no chemi-
cal activity correction, and if the gas solubility is dilute with
respect to the diffusion gases, then

11
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ixere k1 and D,* are the intrinsic and sef-diffusi coe cients of
the gas in the pas-poli mixture.5 ° ihen the hilh pressure is main-
tained cosdtant, the Mas coaeetration in the medrane is initially
zero and the pas permeates into an evacuated costant Volme, the low
prssure wil increase with a ont Inersig rate until a steedy
state Pssure rate is reabed, Fig. 2. Exro nof the steacb
state pressure-ttme carve to the time axis estabidlsh- the lag time, L,
'Wich is used to cala-late the diffai coe z5u n,-

D = 26L. (10)

fte stead state pressure- rate, dP/dt, is used in deteming the pews..-
ability constaut, P. Detemimtions of the diffusion coefficiet fr~M
time lag and the permability constant from htendy state
have been used extensively to detemime Pas permeability, diffusion,
and o3hbility in polymers.

Pezmesbility, diffusion and soliiility are exponentially related
to perature accordiig to the hrrheniUs relationshis,

P = P0 exp( ()

D = Do exp-(ED/IR), (32)

and S = So exp-(AHs/-), (13)

ihere Po, Do, and So are pre-exponential factors, Ep aid ED are activa-

tion energies for permeability and diffusion, respectively, and AHs is
the heat of solUt:!on.52 Substitution of equations (11) to (13) into
equation (8) gives the relation between Ep, ED, and bHs,

Ep= ED +tMs- (14&)

Equations (11) to (13) have been shown to be valid for simple gases in
many polymers over limited "inperature ranges.53254

Activation energies for diffusion are dependent on the degree of
crosslinkig in polymers. As crosslinking increases in natural rubber
by additions of sulfiur, diffusion activation energies increase. The
changes may be attributed to a reduction in the mobility of the polymer
chains as crosslinking increased.5s

Heats of solution for gasea in polymers include the heat of mixing
and heat of condensation. Both are small with the heat of mixing
usuaMly positive and the heat of condensation always negative. Thus,
heats of solution may be positive or negative and are usually small.56

10
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PbydiUwt ls7Iloxam (FIKS) corsists of ]inear •lecules based
on the (CH3)2 SIo 'it shown belm.--

I I j
-Si-O--i-- 0-Si- 0 -

I I I

Ybis elastaur r•mi aNorpbms to approximte-Iy -50C where Cystal-
lization begins and continues to below -60C.5 6 A ow energy barrier
allws free rotation of CH3 groups about siloxane bonzxs5 and results
in bigh as mobilities in the est•mer.-,c 0 1  Solubilities of gases in
FOIS are slm2ar to tbose in mtura. rubber although diffusion and perme-
ability coefficients are at least an order of mguitude greater.6 2

Barrer and Chio neasured oxygen perneability, diffusion, and
iraubmdty constants in oldimettwlsilmane filled with silica over
the temrature range -WO to O°C, Table 1. The low activJation energies
for diffusion are associated wrish free rotation of etbYl groups.

Table I - Oxygen Transport Coustants for
Polydiuetlsiloxane/Silica6 3

T Volume Per Cent Silica
(c) 5.54 18.2

p X 1083
(cc(STP)//sec
can/cm/cm Hg) 0 4.89 3.85

D x 108
(cm=/sec) 0 12.0 10.6

S
(cc(STP)/cc/atm) 0 O.311 0.277

-4o/ne) -Io to o 207& 1870 a

(Ealmoe -40 to 0 216o 3060

1is

(cal/moie) -4o to • o -9oa -11o

aCalculated



LCcpmrison of RD and Do to those for self-diffusion in liquids indicated
that pol]ydimet1lsiloxane is more comparable to liquids than other
elastmers. Higher activation energy for diffusion at the higher filler
concentration was attributed to the filler particles acting as crosslink-
ing agents and producing a tighter chain network.6 3

b. Effect of Pignentation

Solubiity--Where the binder and the pigment in thermal con-
trol coatings can be considered separate, noninteracting phases, the gas

Li_ solubility coefficient of the paint in the absence of pores can be
expressed as

S = VBSB + VpSp (15)

where VB rnd Vp are the volume fractions of binder and pigment, respec-

tively, -B is: the solubility coefficient of binder, and Sp is the sur-

face adsorption coefficient of the pigment. Should porosity be preseni
in the pigmamted polymer, the quantity of gas occupying the pore would
be added to equation (15), giving,

S =VBS + VpSp +VvSv

where Vv is the volume fraction of pores or voids and Sv is the solhu-
bility coefficient. If there are no voids and the polymer wetr the
pigment to the exclusion of gas adsorption, the solubility of the com-
posite will be represented by equation (15) with So equal to zero.04
If the pigment is not completely wet by the polymer, an extensive inter-
face is created for gas adsorption. For natural rubber filled with
carbon black, the hydrogen, nitrogen, and oxygen solubilities in the
composite were greater than predicted for rubber alone. 6 5

Barrer, et al. investigated solubility of propane at 400C in
natural rubber filled with 0 to 40 volume per cent zinc oxide. At low
filler concentrations, propane solution occurred in the rubber only; as
pigment concentration increased, filler adsorption and solubility was
well represented by equation (15). The poro0sity at higher pigment con-
centrations was associated with aggregates which prevented wetting by

j the polymer.8e

Solubility of C4 and C5 paraffins in silicone rubber filled
with 0 to 19 volume per cent silica was predicted by equation (15) with
silica adsorption equal to zero. An investigation of temperature effects
showed no variation in heats of solution with filler concentration. 6 7

Diffusion--Diffusion in a heterogeneous medium is a complex
situation for which diffusion equations have not been derived. Instead,
existing equations have been modified to take into account, among other
things, increased path length due to the presence of the filler. Barrer,
et al. reported for tran'ient state flow,

13



p, 1 QiC CiM O

-J

2C )2CB (17)
ýt = VBKDB- •X- !J

which can be compared to Fick's Second Law where D is not a function of
position,

i 8C D 2c '
X- 2 (18)

where C and CB are concentration in the pigmented polymer and polymer,

respectively; t is time; K is a structure factor; D and DB are the dif-

fusion coefficients in the pigmented polymer and polymer, respectively.
The concentration of gas in the pigmented polymer excluding the pore
phase is

C = VBCB + VpCp (19)

and if Henry's law holds for the pigment and the polymer,

Cp/CB = Sp/'SB. (20)

Rearrangement of equation (19) and substitution of equation (20) gives,

= . (21)
VB + Vp(Sp/SB)

Therefore,
) 2 CB 1 C_ (22)

ýx2  VB + Vp(Sp/SB) ýx2

and
VB

D =KDB VB (23)
VB + Vp(Sp/SB)

If no adsorption occurs on the pigment,

D = K DB (24)

Equations (17) through (24) are based on the assumptions that diffusion
proceeds only in the polymer phase and diffusion in the polymer is
unchanged by the filler. 68

Rayleigh6 9 in 1892, derived a structure factor predicting the
influence of a cubic lattice of spheres on the properties of a medium.
His factor has been successful 0 ,7 in explaining diffusion in hetero-
geneous media and can be expressed as

K= (l2 + VP ~Vp 10/3) (25)

I K=14
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Equation (25) makes no assuption on the size of particles present but
only upon the volume fraction.

Permeability--Changes in permeability constants caused by pig-Li mentation have been expressed using the structure factor of equation
(25) .72 Since D = P/S, substitution into equation (23) gives,

-K __ (26)
"S SB VB + Vp(Sp/SB)

and on rearrangement,

P =KVj3 s (27)
P = K VBPB VBSB + VpSp

Substitution of equation (15) into (27) gives,

P= K VBPB, (28)

where PB is the permeability constant for the polymer. Equation (28) is
Li valid whether or not adsorption occurs on the pigment.

I 6. Surface Energies, Contact Angle, and Adhesion

Equilibrium between the three surface energies in a system composed
of a drop on a plane-solid surface is given by Young's equation.

7SV = 7SL + 7LV cos e (29)

where ySV, 7 SL, and 7LV are the surface free energies of the solid-vapor,

h j solid-liquid, and liquid-vapor interfaces, respectively, and 0 is the

s,)lid-liquid-vapor contact angle measured through the liquid phase,
Fig. 3. Of the four parameters only 7 LV and 0 are experimentally deter-

minable. The surface free energy of the liquid-vapor interface is the
surface tension of the liquid in equilibrium with its vapor and the con-
tact angle can be measured by a variety of techniques.7

S!The wettability of a solid by a liquid is indicated by contact
angle. If a solid is not completely wet, the liquid contact angle is
greater than zero and if complete wetting or spreading occurs, the con-
tact angle is equal to zero. Conditions for spreading are given by

S = 7 Sv - (7SL + 7SV) (30)

"15
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Figure 3. Surface Energy/Contact Angle

where S is the spreading coefficient. For spreading to occur, S must
be greater than zero. This simply means that the combined free energies
of the solid-liquid and liquid-vapor interfaces mist be less than the
solid-vapor free energy. Under this condition the systems total free
energy is reduced by eliminating as much of the solid-vapor interface
as possible.

7 4

The reversible work of separating a liquid from a solid is equal
to the free energy change of the system,

WA = YSV + 7LV - 7SL (31)

where WA is the work of adhesion. On substitution for ySV from Young's

equation, the work of adhesion is

WA 7LV (1 + cos 0). (32)

16
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Li
Zisman presents a compilation of work of adhesion values and shows that
the work of adhesion is a parabolic Duriction of -surface tension.7'5

Contact angles of ýliquids advancing over previously nomietted Sur-
faces may be very different from the receding angle. This has been
attributed to the surface roughness of the solid. If gas is not trapped
at the solid-liquid interface, contact angles less than 90° decrease
with increasing surface rouSbness'and angles greater than 900 increase. 76

Strain in glass has been observed to have a sizeable effect on water
contact angles. The contact angle of water on a clean glass is normally
zero, but Bartell, et al. found water contact angles as high as 800 on

I glass that had been rapidly cooled. Examination of the glass -with polar-
ized light revealed intense strain. After strain removal by annealing,
the contact angle returned to zero. Induced mechanical compression also
caused an increase in contact angle.7 7  The effect of gravity on con-
tact angle is considered negligible and is generally ignored; however,
differences in contact angles as much as 120 have been caused by gravity
for a lucite-water-air system. 7 8

Surfaces containing exposed methyl groups ,are hydrophobic and
exhibit large contact angles with water. Highly condensed packing of
methyl groups in crystallized paraffins have water contact angles as
large as 1110, while the less densely packed methyl groups of amorphous
israffins have contact angles of 101%. n angle of 1010 was found for
polydimethylsiloxane which i#dicated that the methyl groups at the sur-
face efficiently shielded the subsurface Si-O linkages. 7 9

From studies of adhesives, it is generally f6und that polar surfaces
will bond to polar surfaces and nonpolar to nonpolar. Glass with a nega-

L. tive surface charge has a polar surface and, consequently, it is wet by
water. When bonding glass to glass, polymeric materials with polar func-

Stional groups such as-OH,-qOl, -C = 0, and -COOCH 3 produce good adher-[J ence. For bonding polar surfaces to nonpolar surfaces, an intermediate
coupling agent containing both polar and nonpolar functional groups is
used. The polar groups of the coupling agent are oriented to the polar
surface and nonpolar to the nonpolar. 8 0

Moser has shown that adhesion between two materials can be predicted
Ii by determining the polarity of the surfaces using a water contact angle

as an indicator. Surfaces wet by water were considered polar. As con-
tact angles increased, the surfaces were considered more nonpolar and
polarity ranges were arbitrarily defined as: 0 to 2U', polar; 21 to 45°,
slightly nonpolar; 46 to 65', moderately nonpolar; and 66 to 990 nonpolar.
In general, similar polarity was necessary for good bonding. Where good
bonding was obtained between surfaces of opposite polarity, a reorienta-
tion of the functional groups was evidenced by changes in water contact
angles. 81-8,1
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3i. MAterials

a. Rutile Pigment

The pigment for confact angle studies and solar stability
ree nrts was Ti-Pure R-9W Rutile, lot 9980, from E. I. pu_%t

demnours and Co3upy. This pigent was made by the chloride process
and encapsulated vith a silicate-zinc oxide coating from a sodium
silicate-zinc sulfate aqueous solution before themal treatment at
WoO-6O°C. Typical chemical analysis of the final mroduct is given i-
Table II.s4 The A120 3 originated by oxidation of TiC14 and A-lCl, -as
present in ,Lhe pigment, not in the pigment coating.

f Table II. Rutile Pigment Ccmposition

SOxide 
Weight Per Cent

Ti02  89.5

A1o3 1.01

SiO2  5.8
: ZnO 1.2

b. Zinc Oxide Pigment

New Jersey SP-500 zinc oxide was chosen for degradation rateA studies.

c. Polydimethylsiloxane (PDM.S)

~l The polydimethylsiloxane was RTV-602 from General Electric
Company and was received with a typical viscosity of ten poises. After
crosslinking with 1,1,3,3,tetramethylquanideve, a transparent elastomer

was formed.

d. Polymonomethylsiloxane (R4MS)

An organopolysiloxane resin, 01-650 from Owens-Illinois, Inc.,
was dissolved in ethanol for paint preparation. Crosslinking by thermal

-, treatment produced a brittle transparent solid. Ethanol and water were
volatilized during curing, leaving pol~ymonomethylsiloxane. 8 5

jI Preceding page blank
II1



2. Oxj&en ?zanspcrti

Fer ezbility ccnstants wt.-:- -ft-erune& try the stecIy state
metbod and diffusion -eefficien-tz bj U= !:-. Solubility cotnts

were calculated, (S = P/D)1 , whbere S., aA itD arre solbihlity, peruieebil-
it" and diffbsion constants, respec•.ive-iy. Apparatus and Procedure hive
been described earlier.g

b. Seaple Prepe-ration

%o]ymonmtbyl si~ozane (MM) was dissolved in absolute
etbhaol at 43 per cent solids content. Citric acid was added at a
concentration of one weight per cent, of CWS to reduce brittleness
in the cured zol r.n3 7  PMS/-•-u&•-e comositions, Table I-!, were

formla÷ed using a polymer density of 1.298 and a pigment density of
4.o66. Etrinol required to aissolve .r.- and thin the paints "ms
added aid paint voiumes of 150 cc were dispersed by milling for 2A hours.

Samples were cast in 100-m diameter glass rings on flat and
level 3.013-cm Teflon sheets -And covered with filter paper. Self-
supporting nembranes with ,.1ass rings attached were removed from the
Teflon and cured vertically at IC'C for 48 hours. The glass rings
supported the membranes during curing. Membrane thicknesses of
approximately 0.02 cm had variations of six to seven per cent.

Table III. Compositions of Pblymononethylsiloxane
Pigmented with Rutile

Weight Per Cent Volume Per Centa

Composition Rutile P14S Rutile PWMXS Ethanolb

11 85.3 14.7 91.8 5.2 200
12 73.3 26.7 89.6 lO.4 200

13 55.0 45.0 79.3 20.7 200

14 41.6 58.4 69.0 31.0 200
avolume per cents were calculated from measured densities of 1.298 and

4.066 for po].ymonometbylsiloxane and rutile, respectively.

bEthanol volume percentages are based on rutile plus T114S volumes of

100 per cent.
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3. Contact Angle

a. Y m u

7be wtting !c F P-1 ietics were determined by contact angle
mminmrints of uater drops. A cell with glass windws momuted to a

bsr~italjpositionfi metallurgical mIcr 1-sac gPe permitted vertical and
oMIrlzntal positioniM. Drops were Ml- rated with colJimated U&A

and recorded with a 35 1 Pa.

Gravity effets were elimited by neasuring contact anges
of a drop on the substrate (normal) and suspen.ed from the zubstzrt[1(Inverted), Fig. It. Th substrate was mouted off-center and rotated

Lon imined ball berings. The sifstrate position as fixed by a weight
tbat could be adjusted to _oduce an exact 180" rotation.

SThe stage was laraflel. with the rotation axis. A bubble level
mounted to the sge pemitted leveling in the inverted position.
Parallrel surfaced substrates were positioned with spring loaded clips
and cotid be rapidly rotated from the rnomal to the inverted position
vhdl waintaining a lee. sawe surface.

A glass pipette containing distilled d-inieralized water was
insertWd through a cvmpression O-ring seal in the top of the ceil and
lowered the substrate surface. A container of water was placed in
the cell and 30 minutes was allowed fcr atmosphere saturation. A drop
was placed on the substrate and the pipette was retracted to prevent
interference with sample inversion. Drops were allowed five minutes to
equilibrate, photogralihed, then inverted repbotograthed after five
minutes, returned to normla, ana phc,')gratphed again after five minutes.
Three drops on each of two samples of each naterial were measured.
Drop reflection on the substrate surfaces gave a sharp delineation of
the liquid-solid interface except for contact angles near90. Contact
angles were measured with a gonioeter on the eplarged projection ofS~photograph negatives.

b. Sample Preparation

Water contact angles were measured on po•,ycrystalline rutile,
free-formed surfaces of PINS and !W4S, rutile surfaces that were sela-
rated from cast P11S and H9S, and PH1S and PM4 surfaces separated
from rutile. Free-formee. surfaces were the air exposed surfaces of
polymers cast on the low energy surface of Teflon and cured, as described
for oxygen transport samples.

Silicate-coated, chloride-processed rutile pressed at 5000
psi as 2.8-cm discs was fired at 11150C for 168 hours. Density of
95 + 0.1 per cent theoretical was obtained for six samples. Disc sur-
faces were diamond ground parallel to a thickness of 0.4 cm and one sur-U• face was polished to a l41m diamond finish. Samples were cleaned by

- 21
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Iioilim in 2:1e eit Ic-1ft=Ic acd, risiot with li at.cm=titiez ofI ~distilef- Water ant &71i6 at nrk: for -five =Lmztez. The =q1-t~e

-sresitzg of Watnr o a glass sao et clea t z a-ac e 1;M=

PC •and otiG so ut2= Prepared for mo-szr we--*

Cast an cleaned rutiLe s--stratez aod. c•T-ed. A-• b"see of ivr heziena~llowd easy separatica for measurmset of the ratielesiU~icaca itter-_
faces. An samples ilWIOrigi silieomes wert e eiantns tey at est e to@e

A~j. for 2k bmrs to pvrmte Solvrent remomla.

A;.0 In Sif - 3sns ct on ata esueetes • tMea e effect of ac6m ultraviolet orrediation on the solmr re-
felctoancero pcsiethysilozar- /zime oiide paints was e e asurt e at the
vlzsacum rland Coatings Branch, Irnigt-rfttecrSOn Ai Force Base.
Saaples were irradiated rit n a 2.5 re oenon source (Spectrolab Moade
dE-25) at an ultran ol let ane,+ sofr -tis oot e sun in- a VWsar
of 5 x rLt tor-. Origicnla ultraviolet intensity ars estimted to be
3.0 + 0 - 0.3 suns but on actual m~easurem~ent was found to have the

lower value because of severe degntdation of the optical surfaces inthe source unit. Refsectance was measured in sita with a Becr lun Dr-y A
ref]-hctodeter using a four-inch integrating sphere in the vaclum chamber.

i1Reflectance froum 0.35 to 2.5- microns was measured in air before vu--
down. The samples were e eld in vacuum for cne week and pre-irrayiation

vacuum reflectance was measured. In situ reflectance was easuwred
periodically during irradiation and a recovery scan was iade after two
days in air. Solar reflectance, solar absorptance, opi induced solar
absorptance were calculated. Sample temperature varied ftro 60 to 8.3 c

during irradiation.

b. Rutile -Pigment and Faints Preparation] ~A i-utile standard was prepared by spraying a water slurry of
chloride-processed, sill.-.ate-coated i-utile onto a heated aluminum sub-
strate of 2.4 cm diameter and 0.88 cm. thickness. Multiple layers pro-
duced a coating 0.0075 cm (3 mils) thick. All-miinum substrattes were
cleaned by abrading wdith 24 0-grit silicon carbide, rinsing in toluene
and acetone, and drying. Rutile/silicone paint compcsitions 1-4,
Table IV, and compositions 11-14, Table JII, were cast to 0.003 cm
(12 mils) wnd cured en the aluminum substrates. Paint preparation and
and curing were the same as described for oxygen transport samples."'•,"
Citric acid vas omitted from the PMMS paints.

I2
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Sable 1W.. t .am of l.• 3n
pii Orted with qriH ti

J ey P- iper oi deer ronrte

Con a "eclao e prO PMsrae Ro • si"•-0 Pamd sc eno-

1 13.72 US5-36 9.h

2 31-97 56-03 20-:6 89.643

3 52.22 47-78 21.17 '18.83 50)

4 46. 35.59 V-.78 69.22 66

atolueover cents were pfrmted f s eatmold densities of 0999 and
4A.O6 for pobydimetIVy~sI]Dxame and rutile,, respectively.

cast volueme percetages are based ratile and IDS voures h of 100
per cent.

c. Zinc Oxide Pigment and Paints Preparation

aNe Jersey SP-50F zinc oxide was cbosen for degradation rate
studies. A zinc oxide standeard was prepered by spray ing a upter sliy
on a trecltaned alt am owdserbstrate. aoaydiVrethyosi Xatie and ao3Yznd-
metrlhsisoxane were pigmlented with 20 volume per cent zinc oxide and
cast of arueeim substrates, Paint prepraation and curing were the same
as described for odygen transport samples.

5. Zinc ortbotitanate Pinoent

a. Pigment Forha ilation

Zinc orthotitanate pigments were prepared by ball -J3in and
heat treatment to obtain powders with a variety of particle sizes and
thermal histories. A flow char-t of the pigment processing is presented
in Fig.. 5.

In a five-gallon polyethylene jar, 3600 gm of a 2:1 molar
ratio of reagent grade ZnO and tei02 (anatase) were ball-milxed with
9000 cc of deineralized, double-distilled water for 46 hours. The
slurry was dried, crushed to 60 mesh, and reacted for 24, hours at 9250C
in an alumina crucible. The resulting material, Sample A-1, contained
zinc orthotitanate and zinc oxide, as identified by x-ray diffracto-
meter, and had a particle size of 0.91 micron.

The reacted ZnTiO4 Was slurried with 4500 cc of 10% acetic
acid for 24 hours using a polyethylene stirrer. After settling, 4000 cc
of the sample was decanted, and the insoluble material was mixed with
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AM c f isne =er 7e ecntzWprces asrepeated eia I
ti" and f bateh, S•We A-2, ws dried at IWC. eit los
an lmebl S 1kJ p 7 )".0%) and the mnly x-ray diffractmeter detecta-
ble peak other •f ••! bad an intensity ess; tan :K-. The particle L
size of Slam A-2 wa reduced to O.8 pga by tie leaching process.

b. Particle Siz eduction j

Sample A-2 was split into five batches, one 8m0• batch and
for 650-9p batches. 7be 8W-p batch (Sample A-3) ws slurried with
135D cc of distilled water and milled with almi balls in a one-gallon
pol1eftlee Jer for 100 bours. Vi 20 cc samples were perodical

tr during milg (sampl A-3-1 to A-3-9). Surface area and
equivalent spberical particle size for each sawm represent the extent
of particle size redaction, Meble V. 7he particle size depmedence on
banl-•miing tine, Fig. 6, provided the control necessary to achieve a
s fic particle size. X-ray investigation showed a detectable quan-
tity of aIam after 52.3 bours with the alteini content i 2creasi

with time. To minimize contamition from will balls, samples for ultra-
violet degradation were liited to a inxiz millin time of 36 hours.

Table V. Surface Areas and Particle Size of Z•n 2TiO4 Piients

A-i Surface Areaa Particle Sizea

A-i 1.26 0.91 Reacted at 950oC

A-2 1.41 0.80 Acid ueacbedb

A-3-1 1.47 0.77 0.5 hr mill c

A-3-2 1.54 0.73 1.5 hr mille

A-3-3 1.73 0.66 5.0 hr millc

A-3-4 1.88 o.60 10.0 hr millC

A-3-5 2.09 0.54 27.7 hr mj11lc

A-3-6 2.62 0.4.3 52.3 hr millc

A-3-7 3.24 0.35 73.8 hr ,,i11c

A-3-8 3.45 0.33 97.3 hr rillc

A-3-9 3.70 0.31 100.0 hr millc

a Measurement of surface area and calculation of particle

size has been described previouslyAso
b Reacted at 9500C prior to acid leach.
c Reacted at 950°C and acid leached prior to ball milling.
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Three of the four 6 50-gram batches, Samples A-4 to A-6, were
slurried with 1050 cc of distilled water and ball-milled for 36.8 and
2 hours, respectively. Resultant equivalent particle sizes were 0.4,
0.58, and 0.61 gm for Samples 4, 5, and 6, respectively. The fourth
batch, Sample A-7, was not ball-milled and had the same particle size
as Sample A-2, 0.80 pm. All samples were dried at 1100C and crushed
to 60 mesh.

c. Heat Treatment

Samples A-4 to A-7 were split into five 125-gram batches for
heat treatment. Four batches from each sample were quench heated to
850, 950, 1050, and 1150 0 C, held for one hour, and quench cooled in
500 cc of distilled water. The fifth batch was quench heated to 850 0C,
held for one hour, and annealed to room temperature over three days,
Fig. 7. All batches were fired as uncompacted powders in platinum cruci-
bles. Temperature was controlled to ± 5oc in a silicon carbide resis-
tance furnace. Each heat-treated batch was dried and ball-milled with
200 cc of distilled water for two hours. Twenty cc of each slurry were
dried for surface area determinations.

d. Irradiation Powder Samples

Water slurries of twenty heat-treated pigments were sprayed
onto heated aluminum substrates, 2.4-cm diameter by 0.08 cm thick.
Multiple layers were applied under a dry nitrogen pressure of 16 psi.
Two coated substrates of each sample were delivered to Mr. C. P. Boebel,
Elastomers and Coatings Branch, Air Force Materials Laboratory, on
August 25, 1971.

e. In Situ Reflectance

Ultraviolet exposure testing of the 20 Zn 2 TiO4 samples was

accomplished in the equipment described in Section III. 4.a. In situ
pretest reflectance was measured in air and in a racuum (4 x 106-O-r).
Reflectance was recorded at 18, 45, 1i0, and 230 equivalent ultraviolet
sun hours. A final reflectance scan was made after 48 hours air expo-
sure in the dark. Temperature of the specimen back was 490C during
irradiation.
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1 IV. RESULTS AND DISCUSSION

1. oxygen Transport

Oxygen tra.,,_srt properties of pol•ydimethylsiloxane/rutile compo-
11 sitions were reportel in AFML-TR-71-42, Part 1.88 For comparison with

polymonometbylsiloxane properties, a port'on of the polydimethylsiloxane
data has been reproduced.

L" a. Poy]metbylsiloxanes

Oxygen sorption isotherms at 250 C for P1MS and PMMS, Fig. 8,
show that Henry's law held for the pressure range investigated. Con-
stant oxygen diffusion coefficients of 18.9 ± 0.3 x 10-0 and 5.02 ± 0.09
x 1O-7 m2 /sec at 25'C for PDMS and H4MS, respectively, for the pressure
range 0 to 60 cm Hg established that diffusion coefficients were inde-

L. pendent of concentration.

Oxygen transport properties in the polymethylsiloxanes are
shown in Table VI. Permeability and diffusion coefficients of PDMS were
an order of magnitude greater than values for RMS and the solubility
of PEMS was approximately 30 per cent lower. The lower diffusion coef-I] ficients in Pff4S resulted from greater crosslinking and a lower methyl
groiup concentration.

The temperature dependence of oxygen transport constants in
the siloxanes conformed to the Arrhenius relawionship within limits of
experimental precision, Figs. 9-11. Least-squares activation energy for
diffusion, Table VII, was 1300 cal/mole greater for the monomethyl-
siloxane and is attributed to the greater crosslinking in BMMS which
limits chain flexibility. Permeability values and temperature depend-ence in both silicones were controlled by diffusion properties because

solubility values and temperature dependence were similar.

b. Effect of Pigmentation

1 Temperature Dependence--After complete polymer curing, the
temperature dependence of oxygen transport in the pigmented polymono-
metbylsiloxanes was exponentially related to temperature by the
Arrhenius relationship within limits of experimental precision, Figs.
12-14. The least-square temperature coefficients are presented in
Table VIII.

Solubility in PMMS Compositions--Where there are no voids

and the polymer wets the pigment to the exclusion of gas adsorption,1 the solubility of the composite will be represented by

S =VBSB (33)
I Preceding page blank
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Table VI. Oiygen Transport in Polymet•ylsiloxanes

P S

T (cc.(STP)/sec/ ;D(c6(STP)/(0c) cm1/cm/cm Hg) (""/ see) cc/atm).

0 5.28 x 10-8" 12.8 x 10"6 0.313
25 7.41 19.1 0.294
32 8.06 21.1 0.289
42 9.04 24.2 0.283

B50 9.86 26.8 0.278

0 1.68 x 1o-9 2.68 x 10-7 0.476
25 2.83 5.02 0.428

] 32 3.29 5.55 0.450
50 4.72 7.92. 0.453
60 5.95 10.2 o.443

aLeast-squares values for average 6f three samples.
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II Table V 11. 1Urrmiius Cowt=U fl or Oxygen Tmrport
in DbyetbVlsiIDLxne

Po
(cc(S7!?)/sec/ Std. Error of F,

HSample &Cz/u/cn Hig) (cal/wle) (cal/role)

FIUM-' 2.25 z 10-6 2019 67
PIMS-2 2.64 2138 99*1 1US-3 4.45 21497 107
PMS-Ave. 2.98 2188

41 RS 1.71 3774 136

Do ED. St1. Error Of MED
Sample (cz?/sec) (cal./M0le) (cal/role)

PJI4-1 2A.6 x l0-3 2837 1140
PM~S-2 1.07 2418 207
PIE4S-3 1.39 2522 L46
PhIKS-Ave. 1.54 2602

Li
PMMS 0.38 3936 150

SO S0  Std. Error o"e

Sample (cc(STP)cc/atrm) (cal/mole) (cal/mole)

PtD4S-l 0.068 -829 145
PI!4S-2 0.186 -280 208I]IMS4-3 0.247 -134 100
PIN4S-Ave. 0.247 -414

F] M4s 0.3146 -159 145
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.Tabe VIII. Arzbius Constants for OxWen in POIYmono-
Metylwsiloanw/Rutile-St.Erro

Po x 106
cc (.TfP) /Sec/ ISt.Erro

Saqle (2/CR/C, Hg) (cal/1ole) (cal/1ole)

10 1.71 3774 136
U 1.06 3624- 109
12 1.47 3874 108
13 1.96 4136 116

SDo X 104 ED Std. Error of ED
Sample (ca 2 /sec) (cal/moie) (cal/mole)

10 3.77 3936 150
3 2.24 3685 154
12 2.05 3694 202
13 3.57 4043 124

so
(cc(STP)/ As Std. Error of AHS

Sample cc/ata) (cal/mole) (cal/mole)

10 o.346 -159 145
11 0.359 -60 153
12 0.5w0 197 145

13 0.417 94 169
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where VB is the volume fraction of the polymer and SB is the satubility I
constant of the polymer.88 There "was no indication of oxygen adsorption
on rutile in the ROM compositions. The concentration dependence of the j
solubility constants was well represented by equation (33), dashed lines
in Fig. 15. Scatter in solubility values was greater than found in
PUMS ccWpositions due to the variations in P14S mmbranes. Comparison
of observed and calculated densities indicated negligible porosity.
Heats of solution were constant within limits of experimental precision
for all rutile concentrations, Table 8.

Adsorption on the rutile may occur in FWS compositions since i
it is comon for PFHS ccupositions above 20 per cent. A BMMS composi-
tion with 30 per cent rutile was investigated but oxygen flow through
the membrane was too rapid for determination of permeability and diffu-
sion. Thermal expansion mismatch between the brittle 1M9S and rutile
resulted in fine cracks after thermal curing. Critic acid additions
increased membrane flexibility but the samples remained very brittle and
required careful handling.

Permeability in PMMS C-mpositions--Permeability in a hetero-
geneous medium such as a pigmented polymer may be described by

P = K VBPB, (34)

where K is a structure factor and P is the permeability constant of the
polymer. Rayleigh's structure factor for a cubic lattice of spheres
was used to explain the pigment concentration dependence of permeability J
constants. Values of K were reported in AFML-TR-71-42, Pt. 1.88

Permeability constants for P4MS compositions decreased with
increasing pigment concentration; however, permeability values were
lower than predicted by equation (34), Fig. 16. Considering the excel-
lent agreement for PF1S compositions formulated with the same pigment,
the discrepancy is most likely caused by thickness variation of the
PWS membranes. There is no reason to think that permeability constants
for pigment-free PMMS are more accurate than for pigmented compositions,
and it is probable that pigment-free constants were high.

Diffusion in R4MS Compositions--Diffusion coefficients de-
creased as pigmentation increased, Fig. 17. These data were compared
to valu-s predicted by Rayleigh's structure factor for the case of a
nonadsorbing filler

D = K DB (35)

where DB is the diffusion coefficient of the polymer. Diffusion coef-
ficients were lower than predicted by equation (35). This may result
by either sorption on the pigment or thickness variation. Thickness
variations will cause the permeability and diffusion constants of a
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sample to deviate consistently from predicted values. Comparison of
Figs. 16 and 17 show this. Thus, there is nD basis for concluding
oxygcn sorption on the pigment in IEMS compositions.

2. Contact Angle

The reflecilons of normal and inverted water drops, Fig. 18, deline-
ated water-soLd interfaces except at angles near 900. Contact angle
differences due to gravity, A g, were 1 to 40. For example, the height

to radius ratio, h/r, of a water drop on PDMS, Fig. 18, increased from
1.16 to 1.32 on the inversion but the contact angle decreased only 10.
Calculations of contact angles on PDMS, using the eciiation for spherical
geometry,,9

tan 0/2 = h/r, (36)

resulted in 98 and 1060 for the normal and inverted positions, respec-
tively, an average of 1020 which agrees with the 1010 measured average
value. Gravity has a larger affect on drop shape than on contact angle;
however, in all cases, inversion decreased contact angles, Table IX.

Table IX. Water Contact Angles

Contact Angle
Sample Normal Inverted Average Aeg

Rutile - 1 42± 2 38± 3 40 3
Rutile - 2 29± 2 27± 4 28 2

PDMS 102 ± 3 101 ± 2 101 1

MS 9o ±1 89_±1 90 1

PMES/Rutile 92 ± 3 89 ± 2 90 3

PMMS/Rutile 80± 1 76 ± 1 78 4

Rutile/PIrMS-l 80 ± 2 78 ± 1 79 3
Rutile/PLrMS-2 73 ± 2 70 ± 3 72 3

Rutile/PMMS 61± 5 58± 4 60 3
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Complete wetting had been expected on rutile but average contact
angles of 28 and 400 were observed. Scanning electron micrographs,
Fig. 19, showed submicron scratches and a maximum pore diameter of 20
microns with the majority below 10 microns. Such microscopic roughness
was too small to produce the high contact angles. 9 0 The surface con-
sisted of rutile and a glassy phase which occupied 21 per cent of the
surface, Fig. 19. The contact angle of a composite may be calculatedfromp•

cos Oc = f cos0 + f 2 cos 02  (37)

where 0., 0,, and O2 are the covtact angles of the composite, phase 1
and phase 2, respectively, and f, and f 2 are surface fractions. Both
rutile fand glass should be completely wet by water and ec should be
zero. Strain can increase water contact angles on glass to 800 and may
account for the high contact angles. 92

The average contact angle of 1010 for PIDS agreed with Shafrin and
Zisman. 9 -3 A lower methyl group surface concentration in RFIS resulted
in a lower contact angle of 900. Curing polymetbylsiloxanes on rutile
resulted in contact angles U and 120 lower than angles on free-formed
surfaces. Usiig Moser's hypothesis, 9 4 both results predicted better
adhesion for EIMS than for FIMS. The ease of stripping the siloxanes
from rutile showed the adhesion to be small.

Rutile surfaces separated from cured siloxanes have high contact
angles. The increase may have resulted from incomplete solvent renoval
and/or a residue of methyl groups.

3. Silicone/Rutile Optical Properties

a. Solar Reflectance

The reflectance spectra for the water sprayed rutile, PDMS/20
per cent rutile, and NMMS/20 per cent rutile are shown in Figs. 20
through 22. Reflectance of the paints was higher in the visible and

lower in the infrared than for rutile powder. Characteristic silicone
absorption lowered infrared reflectance, and specular reflection from
t6e smooth silicone surfaces increased visible reflectance. The lower
refractive index of PDMS caused a larger relative refractive index for
PDMS/rutile paints. The initial solar reflectance of PDMS paints
exceeded PMMS paints, Fig. 23. Solar reflectance maximized between 10
and 20 per cent rutile. Increased scattering from low pigment concen-
trations were offset by loss of surface gloss at higher pigment concen-
trations.
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Figure 19. Polished Rutile: (a) and (b), Scaining Electron
Micrographs, 500X and 2000X, Respectively;' (c)
and (d), Reflected Light Micrographs of Unetched
Surface, 500X and 2000X, Respectively
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b. Induced Solar Absorptame

7he stability of the silicate-coated rutile produced an
indiced absorptance of O.009 in 230 M, Table X. Silicate coating
produced degradation resistance simila to that of silicate-coated zinc
oxide9s and zinc orthotitamteo and was the first time the effect has
been observed for rutile.

Mhe recovery bleaching of rutile supported the oxygen depend-
ence of the irradiation damage. Differences between induced absorptaices
at 230 ESH and air recovery values for the paints, T.able X, were about
equal to that of the binderless pigeent. Bleaching was attributable to
the pigment and permanent damage represented polymer degradation. Sili-
cone permeability was too high to produce observable differences in pig-
nert degradation.

Induced solar absorptance of WI.S paints was constant, Fig. 24,
and indicated equal degradation from !MM and rutille. For PMS paints,
induced solar absorptances in the pigment increased with concentration
increases to 20 per cent and continued to decrease 'o 30 per cent.

The pigment degraded approxi-rately the same in both PDMS and
HOS. Thus, surface interaction between the pigment and the polymer did
not measurably affect degradation.

Water associated with the pigment was indicated by the charac-
teristic absorption band at 1.9% which increased in intensity with
increasing pigment concentration. For the PDMS series no absorption
occurred for samples 1 (5% TiO2 ) and 2 (10% TiO-,), slight absorption for
sample 3 (20% TiC2 ) and strong absorption for sample 4 (30% TiO2 ). These
results support the oxygen solubility data which indicated oxygen sorp-
tion on the pigment starting at 20 volume per cent and increasing with
concentration.P' In contrast to oxygen solubility data which did not
show sorption on the pigment, B.MS paints had strong water desorption
that increased with increasing pigment concentration. Citric acid, pre-
sent in If4S oxygen transport samples but not in UV irradiated paints,
may have adsorbed on the pigment preventing oxygen sorption. Water
absorption disappeared in vacuum and partialLy reappeared when returned
to ambient conditions.

14. Silicone/Zinc Oxide Degradation

'F Infrared reflectance decreases of 4 to 10 per cent were observed

between initial in-air scans and pre-irradiation vacuum scans for all
samples. Characteristic water absorption was absent and the reflectance
decreases demonstrate the extreme surface oxygen sensitivity )f infrared
spectrum of zinc oxide. Pre-irradiation vacuum solar absorpt 'ces and
ultraviolet induced solar absorptance are reported in Table X7
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Comparison of degradation rates, Fig. 25, indicate that oxygen
transport through the polymethylsiloxanes had little effect on pigment
stability. If oxygen transport in the binders had limited degradation,
the order of increasing stability would have been ZnO< H!IS/ZnO. Solar
absorptance increases for PE1S paints were greater than for PMMS paints
as would be predicted by oxygen diffusion coefficients, but binderless
zinc oxide stability was between that of PEMS and PMMS paints.

The smaller induced absorptances of BIMS paint compared to ZnO
pigment may seem to indicate encapsulation protection. This is not sub-
stantiated by the infrared reflectance changes, Fig. 26. Reflectance
changes at 2.05 mn were almost identical for ZnO pigment and PMMS
paints. The greater reflectance decreases of PDMS paints in the infra-
red and in the visible at longer exposure times, Fig. 27, reflect insta-
bility associated with the polymer and/or pigment/polymer interaction
in addition to pigment damage. All samples bleached to within 1% of
the initial in-air reflectance values.

5. Zinc Orthotitanate

Surface areas and equivalent spherical particle sizes for the zinc
orthotitanate powders are presented in Tables XII and XIII. Particle
size of most samples increased with increasing temperature, Fig. 28.
The most surprising results were the smaller particle sizes of the
ll50°C-quench compared to 1050°C-quench for Samples A-5, A-6, and A-7.

Exponential size increases with increasing temperature were not
expected in the loose powders. The final two-hour ball milling may
have been responsible for the anomolous particle size at 1150 0 C. Ball
milling was necessary to produce sprayable slurries of the lightly sin-
tered powders.

Solar absorptance data, Table XIV, for the heat treated powders did
not show significant UV damage trends for either quenching temperature
or pigment surface area. EYcept for samples quenched from 1150%C and
A-5, 950°C-quench, all powders had initial vacuum solar absorptances of
0.09 4 0.01 and were fairly stable with increases in solar absorptance,
Ias, of 0.02 ± 0.005 after 230 EUVSH. Sample A-5, 950°C-quench was
thin and permitted "shine through" and absorption.

The dependence of solar absorptance on temperature was apparent for
pre-exposure and post-exposure reflectance studies, Fig. 29. The great-
est increase in absorptance with temperature was between the IDSD°C and
llSD°C-quench samples. The visible region exhibited the greatest
increases in absorption with temperature. Solar absorptance was identi-
cal for The 8500c.-quench and anneal samples.

Ultraviolet irradiation damage to all samples was greatest in the
visible region (0.45pm) and the visible damage occurred primarily in the
first 20 EUVSH. Visible damage was approximately 50%0 recoverable while
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Ii
Table XII. Zinc Orthotitanate Surface Areas

Heat Treatment Surface Area (m2/en)

( 0 c) A-4 A-5 A-6 A-7j

Before Heating 2.56 1.97 1.86 1.41

850 - Anneal 1.76 1.53 1.49 1.44

850 - Quench 2.29 1.67 1.60 1.58

950 - Quench 1.67 1.53 i.46 1.45

1050 - Quench 1.57 1.37 1.29 1.40

1150 - Quench 1.414 1.42 1.32 1.43

Table XIII. Zinc Orthotitanate Particle Sizes

Heat Treatment Particle Size* (nm)

( 0 c) A-4 A-5 A-6 A-7

Before Heating 0.44 0.58 o.61 080

850 - Anneal 0.64 0.74 0.76 0.78

850 - Quench 0.50 0.68 0.71 0.72

950 - Quench 0.68 0.74 0.78 0.78

1050 - Quench 0.72 0.83 0.87 o.81

31150 - Quench 0.78 0.80 0.85 0.79

*Calculated from surface area.
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damage in the infrared (0.8 to 1.0,im) recovered completely on air erpo-
sure.

Lack of damage dependence on ball milling time (A-4 to A-7 series)
was surprising. Both grinding-induced strain and chemical contamination
increased with milling time and would be expected to contribute to
degradation cf the pigments.
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SV. CONCLUSIONS

A Investigation of thermal control coatings composed of polymethyl-

siloxanes pigmented with rutile and zinc oxide resulted in the following
S]conclusions:

1. Oxygen adsorption on rutile was present in polydimethyl-
siloxane and not in polymonomethylsiloxane.

2. For gas solution in the polymer and on the pigment, heats
of solution may be predicted by assuming separate non-

jji interacting phases.

3. Rayleigh's structure factor successfully predicted the
effect of pigmentation on permeability and diffusion con-

11stants.

4. Pigment-polymer surface interaction did not measurably
affect ultraviolet induced solar absorptance.

5. Oxygen transport in the polymers was too high to limit
i induced solar absorptance of the pigment.

Ultraviolet irradiation of zinc orthotitanate powders of varying
particle size and quenched from various temperatures resulted in the
following conclusions:

1. Particle size and heat treatment temperature had no
observable affect on ultraviolet degradation of the
pigments.

1 2. Pre-irradiation and post-irradiation solar absorptance
increased with quenching temperature.
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Table XVII - Oxygen Transport Constants for Oxygen in
Polymonomethylsiloxane/Rutile Compositions

TP x i0 S
T (cc(STP)sec/ D x 10' (cc(STP)/

cm2 /cm/cm Hg) (cmw"/sec) cc/atm)

Sample 10-0% Rutile

o 1.68 2.68 0.476
25 2.83 5.02 0. 428
32 3.29 5.55 o.J450
50 4.72 7.92 0.453
60 5.95 10.2 0.443

Sample 11-5.2% Rutile

0 1.34 2.49 o.409
25 2.26 h. 56 0.376
32 2.70 5.02 O.409
50 3.86 7.52 0,390
60 4.35 8.25 0.401

Sample 12-10.4% Rutile

25 2.13 4.o6 0.399
32 2. h4 4.51 o.411
50 3.54 6.66 O. 4o4
60 4.22 7.62 o.421

S-mpDle I1-90-74, Rut.ilc

0 0.95 2.09 0.348
25 1.87 3.78 0.378
32 2.08 4.65 0.341
50 3.05 6.36 o. 364
60 3.86 8.13 0.366


